Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 430
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 303, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639795

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV) causes the highly fatal disease in humans. To facilitate diagnosis, the native form of subunit glycoprotein (Gn), a prime target for potential vaccines and therapies, was produced in Nicotiana benthamiana using a Bamboo mosaic virus-based vector system. By fusion with secretory signal tags, SSExt, derived from the extension protein, and the (SP)10 motif, the yield of the recombinant Gn (rGn) was remarkably increased to approximately 7 mg/kg infiltrated leaves. Ultimately, an rGn-based ELISA was successfully established for the detection of SFTSV-specific antibodies in serum samples from naturally infected monkeys. As validated with the reference method, the specificity and sensitivity of rGn-ELISA were 94% and 96%, respectively. In conclusion, utilizing well-suited fusion tags facilitates rGn production and purification in substantial quantities while preserving its antigenic properties. The rGn-ELISA, characterized by its commendable sensitivity and specificity could serve as a viable alternative diagnostic method for assessing SFTSV seroprevalence. KEY POINTS: • SFTSV Gn, fused with secretory signal tags, was expressed by the BaMV-based vector. • The plant fusion tags increased expression levels and eased the purification of rGn. • The rGn-ELISA was established and validated; its specificity and sensitivity > 94%.


Assuntos
Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Humanos , Febre Grave com Síndrome de Trombocitopenia/diagnóstico , Phlebovirus/genética , Phlebovirus/metabolismo , Estudos Soroepidemiológicos , Glicoproteínas/metabolismo , Anticorpos
2.
J Virol ; 98(4): e0013224, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38511932

RESUMO

Heartland virus (HRTV) is an emerging tick-borne bandavirus that causes a febrile illness of varying severity in humans, with cases reported in eastern and midwestern regions of the United States. No vaccines or approved therapies are available to prevent or treat HRTV disease. Here, we describe the genetic changes, natural history of disease, and pathogenesis of a mouse-adapted HRTV (MA-HRTV) that is uniformly lethal in 7- to 8-week-old AG129 mice at low challenge doses. We used this model to assess the efficacy of the ribonucleoside analog, 4'-fluorouridine (EIDD-2749), and showed that once-daily oral treatment with 3 mg/kg of drug, initiated after the onset of disease, protects mice against lethal MA-HRTV challenge and reduces viral loads in blood and tissues. Our findings provide insights into HRTV virulence and pathogenesis and support further development of EIDD-2749 as a therapeutic intervention for HRTV disease. IMPORTANCE: More than 60 cases of HRTV disease spanning 14 states have been reported to the United States Centers for Disease Control and Prevention. The expanding range of the Lone Star tick that transmits HRTV, the growing population of at-risk persons living in geographic areas where the tick is abundant, and the lack of antiviral treatments or vaccines raise significant public health concerns. Here, we report the development of a new small-animal model of lethal HRTV disease to gain insight into HRTV pathogenesis and the application of this model for the preclinical development of a promising new antiviral drug candidate, EIDD-2749. Our findings shed light on how the virus causes disease and support the continued development of EIDD-2749 as a therapeutic for severe cases of HRTV infection.


Assuntos
Doenças dos Animais , Infecções por Bunyaviridae , Bunyaviridae , Phlebovirus , Carrapatos , Nucleotídeos de Uracila , Humanos , Animais , Estados Unidos , Camundongos , Phlebovirus/genética
3.
Microbiol Spectr ; 12(4): e0342823, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38456695

RESUMO

Sandfly-borne phleboviruses (SBPs), which cause sandfly fever, aseptic meningitis, encephalitis, and meningoencephalitis, are emerging pathogens of major public health concern. Virus nucleic acid testing is essential for SBP diagnosis, especially in the early stages of infection, and for the discovery of novel SBPs. The efficacy of utilizing generic primers that target conserved nucleotide sequences for the detection of both known and novel SBPs has not been extensively evaluated. We aimed to compare and evaluate the performance of five generic primer sets, widely used to detect S- and L-segments of arthropod-borne phleboviruses and designed as singleplex (n = 3) and nested (n = 2) formats, including both well-known and recently characterized 15 Old World virus strains. Furthermore, we performed in silico analysis to assess the detection capabilities of these generic primer sets. The initial evaluation of previously published generic primer sets for SBP detection yielded two singleplex primer sets with the potential to be adapted for use in real-time or high-throughput detection settings. Studies are ongoing to develop and further optimize a preliminary assay and test various hosts and vectors to assess their capacity to detect known and novel viruses. IMPORTANCE: Virus nucleic acid testing is the primary diagnostic method, particularly in the early stages of illness. Virus-specific or syndromic tests are widely used for this purpose. The use of generic primers has had a considerable impact on the discovery, identification, and detection of Old World sandfly-borne phleboviruses (OWSBP). The study is significant because it is the first to carry out a comparative evaluation of all published OWSBP generic primer sets.


Assuntos
Ácidos Nucleicos , Phlebovirus , Psychodidae , Animais , Phlebovirus/genética , Técnicas de Amplificação de Ácido Nucleico , Filogenia
4.
Microbiome ; 12(1): 35, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38378577

RESUMO

BACKGROUND: Haemaphysalis longicornis is drawing attentions for its geographic invasion, extending population, and emerging disease threat. However, there are still substantial gaps in our knowledge of viral composition in relation to genetic diversity of H. longicornis and ecological factors, which are important for us to understand interactions between virus and vector, as well as between vector and ecological elements. RESULTS: We conducted the meta-transcriptomic sequencing of 136 pools of H. longicornis and identified 508 RNA viruses of 48 viral species, 22 of which have never been reported. Phylogenetic analysis of mitochondrion sequences divided the ticks into two genetic clades, each of which was geographically clustered and significantly associated with ecological factors, including altitude, precipitation, and normalized difference vegetation index. The two clades showed significant difference in virome diversity and shared about one fifth number of viral species that might have evolved to "generalists." Notably, Bandavirus dabieense, the pathogen of severe fever with thrombocytopenia syndrome was only detected in ticks of clade 1, and half number of clade 2-specific viruses were aquatic-animal-associated. CONCLUSIONS: These findings highlight that the virome diversity is shaped by internal genetic evolution and external ecological landscape of H. longicornis and provide the new foundation for promoting the studies on virus-vector-ecology interaction and eventually for evaluating the risk of H. longicornis for transmitting the viruses to humans and animals. Video Abstract.


Assuntos
Ixodidae , Phlebovirus , Carrapatos , Animais , Humanos , Ixodidae/genética , 60614 , Viroma/genética , Filogenia , Phlebovirus/genética
5.
EBioMedicine ; 99: 104944, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38176215

RESUMO

BACKGROUND: Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne pathogen that causes severe hemorrhagic fever in humans, but no FDA-approved specific antivirals or vaccines are available to treat or prevent SFTS. METHODS: The plasmids construction and transfection were performed to generate the recombinant SFTSV harboring the nanoluciferase gene (SFTSV-Nluc). Immunostaining plaque assay was performed to measure viral titers, and DNA electrophoresis and Sanger sequencing were performed to evaluate the genetic stability. Luciferase assay and quantitative RT-PCR were performed to evaluate the efficacy of antivirals in vitro. Bioluminescence imaging, titration of virus from excised organs, hematology, and histopathology and immunohistochemistry were performed to evaluate the efficacy of antivirals in vivo. FINDINGS: SFTSV-Nluc exhibited high genetic stability and replication kinetics similar to those of wild-type virus (SFTSVwt), then a rapid high-throughput screening system for identifying inhibitors to treat SFTS was developed, and a nucleoside analog, 4-FlU, was identified to effectively inhibit SFTSV in vitro. SFTSV-Nluc mimicked the replication characteristics and localization of SFTSVwt in counterpart model mice. Bioluminescence imaging of SFTSV-Nluc allowed real-time visualization and quantification of SFTSV replication in the mice. 4-FlU was demonstrated to inhibit the replication of SFTSV with more efficiency than T-705 and without obvious adverse effect in vivo. INTERPRETATION: The high-throughput screening system based on SFTSV-Nluc for use in vitro and in vivo revealed that a safe and effective antiviral nucleoside analog, 4-FlU, may be a basis for the strategic treatment of SFTSV and other bunyavirus infections, paving the way for the discovery of antivirals. FUNDING: This work was supported by grants from the National Key Research and Development Plan of China (2021YFC2300700 to L. Zhang, 2022YFC2303300 to L. Zhang), Strategic Priority Research Program of Chinese Academy of Sciences (XDB0490000 to L. Zhang), National Natural Science Foundation of China (31970165 to L. Zhang, U22A20379 to G. Xiao), the Science and Technology Commission of Shanghai Municipality (21S11903100 to Y. Xie), Hubei Natural Science Foundation for Distinguished Young Scholars (2022CFA099 to L. Zhang).


Assuntos
Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Humanos , Animais , Camundongos , Phlebovirus/genética , Nucleosídeos , China , Antivirais/farmacologia , Antivirais/uso terapêutico , Febre
6.
J Vet Med Sci ; 86(2): 211-220, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38171741

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is a potentially fatal tick-borne zoonotic disease, endemic to Asian regions, including western Japan. Cats appear to suffer a particularly severe form of the disease; however, feline SFTS is not clinically well characterized. Accordingly, in this study, we investigated the associations of, demographic, hematological and biochemical, immunological, and virological parameters with clinical outcome (fatal cases vs. survivors) in SFTSV-positive cats. Viral genomic analysis was also performed. Viral load in blood, total bilirubin, creatine phosphokinase, serum amyloid A, interleukin-6, tumor necrotic factor-α, and virus-specific IgM and IgG differed significantly between survivors and fatal cases, and thus may have utility as prognosticators. Furthermore, survivor profiling revealed high-level of viremia with multiple parameters (white blood cells, platelet, total bilirubin, glucose, and serum amyloid A) beyond the reference range in the 7-day acute phase, and signs of clinical recovery in the post-acute phase (parameters returning to, or tending toward, the reference range). However, SFTSV was still detectable from some survived cats even 14 days after onset of disease, indicating the risk of infection posed by close-contact exposure may persist through the post-acute phase. This study provides useful information for prognostic assessments of acute feline SFTS, and may contribute to early treatment plans for cats with SFTS. Our findings also alert pet owners and animal health professionals to the need for prolonged vigilance against animal-to-human transmission when handling cats that have been diagnosed with SFTS.


Assuntos
Infecções por Bunyaviridae , Doenças do Gato , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Doenças Transmitidas por Carrapatos , Animais , Humanos , Gatos , Febre Grave com Síndrome de Trombocitopenia/veterinária , Prognóstico , Phlebovirus/genética , Infecções por Bunyaviridae/veterinária , Infecções por Bunyaviridae/epidemiologia , Proteína Amiloide A Sérica , Doenças Transmitidas por Carrapatos/veterinária , Bilirrubina
7.
Virol Sin ; 39(1): 113-122, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38008382

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) caused by the SFTS virus (SFTSV) is an emerging disease in East Asia with a fatality rate of up to 30%. However, the viral-host interaction of SFTSV remains largely unknown. The heat-shock protein 90 (Hsp90) family consists of highly conserved chaperones that fold and remodel proteins and has a broad impact on the infection of many viruses. Here, we showed that Hsp90 is an important host factor involved in SFTSV infection. Hsp90 inhibitors significantly reduced SFTSV replication, viral protein expression, and the formation of inclusion bodies consisting of nonstructural proteins (NSs). Among viral proteins, NSs appeared to be the most reduced when Hsp90 inhibitors were used, and further analysis showed that their translation was affected. Co-immunoprecipitation of NSs with four isomers of Hsp90 showed that Hsp90 ß specifically interacted with them. Knockdown of Hsp90 ß expression also inhibited replication of SFTSV. These results suggest that Hsp90 ß plays a critical role during SFTSV infection and could be a potential target for the development of drugs against SFTS.


Assuntos
Infecções por Bunyaviridae , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Humanos , Febre Grave com Síndrome de Trombocitopenia/genética , Phlebovirus/genética , Interações entre Hospedeiro e Microrganismos
8.
Ticks Tick Borne Dis ; 15(1): 102277, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37981467

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is a newly emerged tick-borne viral zoonosis and widely prevalent in China, Japan and South Korea. Most reported SFTS cases have been identified in mountainous and hilly areas, with a few in island areas. In this study, we conducted a systematic investigation about natural infection of SFTS virus (SFTSV) among humans, animals and ticks in a coastal endemic prefecture, containing island, plains and mountain settings, in Zhejiang Province, Southeastern China. From July 2020 to June 2021, 1117 participants completed a survey with questionnaire interview and serum testing. Meanwhile, 862 serum samples of domestic animals, 275 spleen tissue samples of wild animals and 829 ticks representing five species (predominantly Haemaphysalis longicornis and Rhipicephalus sanguineus sensu lato) were collected. The seroprevalence of anti-SFTSV total antibody and IgM antibody among the participants was 4.8 % (54/1117) and 0.6 % (7/1117), respectively. Multivariate logistic regression analysis indicated that living in the island area (OR=2.66; 95 %CI: 1.04-6.80; P = 0.041) was significantly associated with seropositivity of total antibody to SFTSV. Furthermore, a higher seroprevalence was observed in domestic animals (36.1 %), while the SFTSV-RNA infection rate was 0.4 % in wild animals and the minimum infection rate (MIR) was 0.8 % for all tick species combined. The only tick species infected with SFTSV was H. longicornis. The prevalence of SFTSV infection in the island area, manifested by anti-SFTSV total antibody (P = 0.012) and IgM antibody (P = 0.004) among humans, anti-SFTSV total antibody (P<0.001) among domestic animals, and SFTSV-RNA among ticks (P = 0.022), was significantly higher than that in the mountainous area and the plain area. Furthermore, phylogenetic analysis showed that SFTSV sequences obtained from ticks in the island area were clustered with reported strains in Japan and South Korea. These results suggest that islands in the study area might be an important natural focus of SFTSV.


Assuntos
Infecções por Bunyaviridae , Phlebovirus , Rhipicephalus sanguineus , Febre Grave com Síndrome de Trombocitopenia , Animais , Humanos , Filogenia , Estudos Soroepidemiológicos , Phlebovirus/genética , Animais Domésticos , Animais Selvagens , China/epidemiologia , RNA , Rhipicephalus sanguineus/genética , Imunoglobulina M , Infecções por Bunyaviridae/epidemiologia , Infecções por Bunyaviridae/veterinária
9.
J Vet Med Sci ; 86(2): 228-238, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38143087

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is an infectious disease caused by a tick-borne virus called severe fever with thrombocytopenia syndrome virus (SFTSV). In recent years, human infections through contact with ticks and through contact with the bodily fluids of infected dogs and cats have been reported; however, no vaccine is currently available. SFTSV has two glycoproteins (Gn and Gc) on its envelope, which are vaccine-target antigens involved in immunogenicity. In the present study, we constructed novel SFTS vaccine candidates using an adeno-associated virus (AAV) vector to transport the SFTSV glycoprotein genome. AAV vectors are widely used in gene therapy and their safety has been confirmed in clinical trials. Recently, AAV vectors have been used to develop influenza and SARS-CoV-2 vaccines. Two types of vaccines (AAV9-SFTSV Gn and AAV9-SFTSV Gc) carrying SFTSV Gn and Gc genes were produced. The expression of Gn and Gc proteins in HEK293T cells was confirmed by infection with vaccines. These vaccines were inoculated into mice, and the collected sera produced anti-SFTS antibodies. Furthermore, sera from AAV9-SFTSV Gn infected mice showed a potent neutralizing ability, similar to previously reported SFTS vaccine candidates that protected animals from SFTSV infection. These findings suggest that this vaccine is a promising candidate for a new SFTS vaccine.


Assuntos
Infecções por Bunyaviridae , Doenças do Gato , Doenças do Cão , Phlebovirus , Doenças dos Roedores , Febre Grave com Síndrome de Trombocitopenia , Trombocitopenia , Animais , Humanos , Gatos , Camundongos , Cães , Febre Grave com Síndrome de Trombocitopenia/veterinária , Dependovirus/genética , Dependovirus/metabolismo , Phlebovirus/genética , Infecções por Bunyaviridae/veterinária , Vacinas contra COVID-19 , Células HEK293 , Glicoproteínas , Trombocitopenia/veterinária
10.
Viruses ; 15(12)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38140579

RESUMO

Severe Fever with Thrombocytopenia Syndrome (SFTS), caused by the SFTS Virus (SFTSV), is a global health threat. SFTSV in Taiwan has only been reported in ruminants and wild animals. Thus, we aimed to investigate the infection statuses of dogs and cats, the animals with closer human interactions. Overall, the SFTSV RNA prevalence was 23% (170/735), with dogs showing a 25.9% (111/429) prevalence and cats at 19.3% (59/306) prevalence. Noticeably, the prevalence in stray animals (39.8% 77/193) was significantly higher than in domesticated ones (17.2%, 93/542). Among the four categories analyzed, the highest SFTSV prevalence was found in the stray dogs at 53.9% (120/193), significantly higher than the 24.2% prevalence noted in stray cats. In contrast, domesticated animals exhibited similar prevalence rates, with 17.1% for dogs and 17.2% for cats. It is noteworthy that in the domesticated animal groups, a significantly elevated prevalence (45%, 9/20) was observed among cats exhibiting thrombocytopenia compared to those platelet counts in the reference range (4.8%, 1/21). The high infection rate in stray animals, especially stray dogs, indicated that exposure to various outdoor environments influences the prevalence of infections. Given the higher human interaction with dogs and cats, there is a need for proactive measures to reduce the risk associated with the infection of SFTSV in both animals and humans.


Assuntos
Infecções por Bunyaviridae , Doenças do Gato , Doenças do Cão , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Animais , Gatos , Humanos , Cães , Febre Grave com Síndrome de Trombocitopenia/epidemiologia , Febre Grave com Síndrome de Trombocitopenia/veterinária , Infecções por Bunyaviridae/epidemiologia , Infecções por Bunyaviridae/veterinária , Taiwan/epidemiologia , Doenças do Gato/epidemiologia , Doenças do Cão/epidemiologia , Phlebovirus/genética , Animais Selvagens , Animais Domésticos
11.
Viruses ; 15(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38140594

RESUMO

Mudanjiang phlebovirus (MJPV) is a newly discovered phlebovirus, initially detected from Ixodes persulcatus ticks in China in 2022. In this study, by next-generation sequencing (NGS) on a wide variety of ticks and wild small animals in China, we detected MJPV from I. persulcatus and Meriones meridianus. Additionally, we conducted RT-PCR and sequencing on 1815 adult ticks and 805 wild small mammals collected from eight provinces in China between 2017 and 2021. MJPV RNA-positive results were found in 0.22% (4/1815) of tick samples, as well as in 0.12% (1/805) of rodent samples. All positive detections were obtained from Heilongjiang and Inner Mongolia. Sequencing analysis revealed nucleotide similarities ranging from 98.23% to 99.11%, as well as amino acid similarities ranging from 99.12% to100%, between the current MJPV strain and previously reported strains of MJPV. Phylogenetic tree analysis demonstrated that the previously reported MJPV strain along with our two variants clustered together with other tick-borne phenuiviruses, indicating their close relationship within this viral group. This study represents the first detection of MJPV infection in wild rodents, expanding the known host range for this virus in the endemic regions.


Assuntos
Ixodes , Phlebovirus , Vírus , Animais , Phlebovirus/genética , Filogenia , Animais Selvagens , Roedores , China/epidemiologia
12.
Viruses ; 15(12)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38140644

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne zoonotic disease caused by the SFTS virus (SFTSV). In Thailand, three human cases of SFTS were reported in 2019 and 2020, but there was no report of SFTSV infection in animals. Our study revealed that at least 16.6% of dogs in Thailand were seropositive for SFTSV infection, and the SFTSV-positive dogs were found in several districts in Thailand. Additionally, more than 70% of the serum samples collected at one shelter possessed virus-neutralization antibodies against SFTSV and the near-complete genome sequences of the SFTSV were determined from one dog in the shelter. The dog SFTSV was genetically close to those from Thailand and Chinese patients and belonged to genotype J3. These results indicated that SFTSV has already spread among animals in Thailand.


Assuntos
Infecções por Bunyaviridae , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Doenças Transmitidas por Carrapatos , Animais , Humanos , Cães , Febre Grave com Síndrome de Trombocitopenia/epidemiologia , Febre Grave com Síndrome de Trombocitopenia/veterinária , Infecções por Bunyaviridae/epidemiologia , Infecções por Bunyaviridae/veterinária , Estudos Soroepidemiológicos , Tailândia/epidemiologia , Anticorpos Antivirais , Phlebovirus/genética
13.
J Med Virol ; 95(11): e29203, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37909776

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne virus, causing thrombocytopenia and hemorrhagic fever, with a fatality rate ranging from 12% to 30%. SFTSV possesses Gn and Gc glycoproteins, which are responsible for host cell receptor attachment and membrane fusion, respectively, to infect host cells. We have previously reported a protein subunit vaccine candidate (sGn-H-FT) of the SFTSV soluble Gn head region (sGn-H) fused with self-assembling ferritin (FT) nanoparticles, displaying strong protective immunogenicity. In this study, we present messenger RNA (mRNA) vaccine candidates encoding sGn-H or sGn-H-FT, both of which exhibit potent in vivo immunogenicity and protection capacity. Mice immunized with either sGn-H or sGn-H-FT mRNA lipid nanoparticle (LNP) vaccine produced strong total antibodies and neutralizing antibodies (NAbs) against sGn-H. Importantly, NAb titers remained high for an extended period. Finally, mice immunized with sGn-H or sGn-H-FT mRNA LNP vaccine were fully protected from a lethal dose of SFTSV challenge, showing no fatality. These findings underscore the promise of sGn-H and sGn-H-FT as vaccine antigen candidates capable of providing protective immunity against SFTSV infection.


Assuntos
Phlebovirus , Proteínas do Envelope Viral , Animais , Camundongos , Proteínas do Envelope Viral/genética , Phlebovirus/genética , Vacinas Sintéticas , RNA Mensageiro/genética , Vacinas de mRNA
14.
Viruses ; 15(11)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38005905

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is a tick-borne infection caused by the SFTS virus (SFTSV), with a high fatality rate of approximately 30% in humans. In recent years, cases of contact infection with SFTSV via bodily fluids of infected dogs and cats have been reported. In this study, clinical and virological analyses were performed in two dogs in which SFTSV infection was confirmed for the first time in the Toyama prefecture. Both dogs recovered; however, one was severely ill and the other mildly ill. The amount of the SFTSV gene was reduced to almost similar levels in both dogs. In the dogs' sera, the SFTSV gene was detected at a low level but fell below the detection limit approximately 2 weeks after onset. Notably, the SFTSV gene was detected at levels several thousand times higher in urine than in other specimens from both dogs. Furthermore, the gene was detected in the urine for a long period of >2 months. The clinical signs disappeared on days 1 or 6 after onset, but infectious SFTSV was detected in the urine up to 3 weeks later. Therefore, it is necessary to be careful about contact with bodily fluids, especially urine, even after symptoms have disappeared.


Assuntos
Infecções por Bunyaviridae , Doenças do Gato , Doenças do Cão , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Humanos , Animais , Cães , Gatos , Febre Grave com Síndrome de Trombocitopenia/diagnóstico , Febre Grave com Síndrome de Trombocitopenia/veterinária , Infecções por Bunyaviridae/diagnóstico , Infecções por Bunyaviridae/veterinária , Doenças do Cão/diagnóstico , Phlebovirus/genética
15.
Viruses ; 15(11)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38005928

RESUMO

Rift Valley fever phlebovirus (RVFV) is a zoonotic pathogen that causes Rift Valley fever (RVF) in livestock and humans. Currently, there is no licensed human vaccine or antiviral drug to control RVF. Although multiple species of animals and humans are vulnerable to RVFV infection, host factors affecting susceptibility are not well understood. To identify the host factors or genes essential for RVFV replication, we conducted CRISPR-Cas9 knockout screening in human A549 cells. We then validated the putative genes using siRNA-mediated knock-downs and CRISPR-Cas9-mediated knock-out studies. The role of a candidate gene in the virus replication cycle was assessed by measuring intracellular viral RNA accumulation, and the virus titers were analyzed using plaque assay or TCID50 assay. We identified approximately 900 genes with potential involvement in RVFV infection and replication. Further evaluation of the effect of six genes on viral replication using siRNA-mediated knock-downs revealed that silencing two genes (WDR7 and LRP1) significantly impaired RVFV replication. For further analysis, we focused on the WDR7 gene since the role of the LRP1 gene in RVFV replication was previously described in detail. WDR7 knockout A549 cell lines were generated and used to dissect the effect of WRD7 on a bunyavirus, RVFV, and an orthobunyavirus, La Crosse encephalitis virus (LACV). We observed significant effects of WDR7 knockout cells on both intracellular RVFV RNA levels and viral titers. At the intracellular RNA level, WRD7 affected RVFV replication at a later phase of its replication cycle (24 h) when compared with the LACV replication, which was affected in an earlier replication phase (12 h). In summary, we identified WDR7 as an essential host factor for the replication of two different viruses, RVFV and LACV, both of which belong to the Bunyavirales order. Future studies will investigate the mechanistic role through which WDR7 facilitates phlebovirus replication.


Assuntos
Phlebovirus , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Humanos , Vírus da Febre do Vale do Rift/genética , Phlebovirus/genética , Replicação Viral , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Proteínas Adaptadoras de Transdução de Sinal
16.
Zhonghua Yu Fang Yi Xue Za Zhi ; 57(10): 1719-1724, 2023 Oct 06.
Artigo em Chinês | MEDLINE | ID: mdl-37859394

RESUMO

To investigate two clusters of severe fever with thrombocytopenia syndrome virus (SFTSV) in Xinyang City, Henan Province, in 2022, and analyze their causes, transmission route, risk factors, and the characteristics of virus genetic variation. Case search and case investigation were carried out according to the case definition. Blood samples from cases, family members and neighbors and samples of biological vectors were collected for RT-PCR to detect SFTSV. The whole genome sequencing and bioinformatics analysis were performed on the collected positive samples. A total of two clustered outbreaks occurred, involving two initial cases and ten secondary cases, all of which were family recurrent cases. Among them, nine secondary cases had close contact with the blood of the initial case, and it was determined that close contact with blood was the main risk factor for the two clustered outbreaks. After genome sequencing analysis, we found that the SFTSV genotype in two cases was type A, which was closely related to previous endemic strains in Xinyang. The nucleotide sequence of the SFTSV in the case was highly homologous, with a total of nine amino acid mutation sites in the coding region. It was not ruled out that its mutation sites might have an impact on the outbreak of the epidemic.


Assuntos
Infecções por Bunyaviridae , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Trombocitopenia , Humanos , Febre Grave com Síndrome de Trombocitopenia/complicações , Febre Grave com Síndrome de Trombocitopenia/epidemiologia , Infecções por Bunyaviridae/complicações , Infecções por Bunyaviridae/epidemiologia , Trombocitopenia/epidemiologia , Trombocitopenia/genética , Trombocitopenia/complicações , Phlebovirus/genética , Surtos de Doenças , China/epidemiologia
17.
Viruses ; 15(10)2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37896859

RESUMO

Fermo virus is a Phlebovirus that is increasingly reported in sand flies from northern Italy. The natural cycle is not fully understood, but the virus has been detected by direct methods only in sand flies. Although there is serological evidence that it can infect vertebrates, the virus has not been directly detected in animals or humans. Here, we have developed and reported a specific real-time PCR for Fermo virus. The availability of the described method will be useful to characterize the epidemiology of the FERV, ensuring, compared to previously available protocols, a more sensitive detection in insects and the possible detection in vertebrates to evaluate the presence of reservoirs and the pathogenic potential of the virus in humans or animals.


Assuntos
Phlebovirus , Psychodidae , Animais , Humanos , Phlebovirus/genética , Reação em Cadeia da Polimerase em Tempo Real , Itália
18.
Vector Borne Zoonotic Dis ; 23(12): 662-669, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37788402

RESUMO

Background: Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by Dabie bandavirus, which belongs to the genus Bandavirus, family Phenuiviridae, and order Bunyavirales. It has been found in tick species, various animals, and humans. The aim of this study was to detect RNA of antigens and antibodies against SFTS virus (SFTSV) among poultry such as chickens, ducks, and wild geese from five provinces in the Republic of Korea (ROK). Materials and Methods: A one-step reverse transcriptase (RT)-PCR and nested PCR were performed after viral RNA extraction. The phylogenetic tree was constructed after sequencing data were analyzed and aligned. An indirect enzyme-linked immunosorbent assay (ELISA) and a neutralization test (NT) were performed to test for IgG antibodies of SFTSV. Results: Of a total of 606 poultry serum samples collected, 568 and 539 serum samples were used to perform ELISA and NT, respectively. Of a total of 606 serum samples tested by RT-PCR targeting the S segment, 15 (2.5%) were positive for SFTSV. From the 15 positive serum samples for the SFTSV antigen, three from chickens, three from ducks, and one from wild geese were classified as genotype B-2; one from chickens was classified as genotype B-3; and three from chickens and four from wild geese were classified as genotype D. Of the 568 serum samples tested by ELISA, 83 (28.0%) from chickens, 81 (32.9%) from ducks, and 8 (30.8%) from wild geese were seropositive. Of the 539 serum samples for which an NT was performed, 113 (38.6%) from chickens and 75 (30.5%) from ducks were positive for SFTSV antibodies. Conclusions: The results of this study provide useful information regarding detection of SFTSV RNA and antibodies among poultry and the possibility of SFTSV transmission in various types of poultry, including chickens, ducks, and wild geese, in the ROK.


Assuntos
Infecções por Bunyaviridae , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Humanos , Animais , Febre Grave com Síndrome de Trombocitopenia/veterinária , Aves Domésticas/genética , Prevalência , Filogenia , Infecções por Bunyaviridae/epidemiologia , Infecções por Bunyaviridae/veterinária , Galinhas , Phlebovirus/genética , Patos , RNA Viral/genética , República da Coreia/epidemiologia
19.
Arch Virol ; 168(11): 271, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833439

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV) has been reported in many countries in Southeast Asia, which expands the original geographic range of China, Korea, and Japan. Here, we report the complete genome sequences of two Thai SFTSV strains previously identified in patients with undifferentiated febrile illness in 2020. Phylogenetically, both clustered with SFTSV genotype B strains and were most closely related to those previously reported in central China (≥99.0% nucleotide sequence identity) in the L, M, and S gene segments. Nine amino acid residues encoded by one or more Thai SFTSV genomes differed from those found in global strains. Interestingly, the observed differences in numerous residues between the Thai strains suggest possible separate introductions of different variants into the region.


Assuntos
Infecções por Bunyaviridae , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Humanos , Tailândia , Filogenia , Phlebovirus/genética , Genótipo
20.
Vector Borne Zoonotic Dis ; 23(11): 595-603, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37682292

RESUMO

Background: Severe fever with thrombocytopenia syndrome (SFTS) is an emerging zoonotic tick-borne disease in East Asia caused by the SFTS virus (SFTSV). It is to investigate the presence of SFTSV RNA and antibodies in horses from a slaughterhouse and equestrian centers in the Republic of Korea (ROK). A prevalence study of SFTSV-specific RNA and antibodies was designed from 889 horses in the ROK. Materials and Methods: Serum samples were collected from horses at a slaughterhouse and equestrian centers from 2018 to 2020. To detect the presence of SFTSV, RNA was extracted from the serum samples, and a nested reverse transcription-polymerase chain reaction (RT-PCR) was conducted. Sequencing data were analyzed, and a phylogenetic tree was constructed using the maximum-likelihood method with Molecular Evolutionary Genetics Analysis Version 7.0 software. The horse sera were also tested for SFTSV-specific immunoglobulin G antibodies using enzyme-linked immunosorbent assay (ELISA). Results: Twelve of 889 (1.3%) horse sera were positive for SFTSV RNA, and 452 of 887 (51.0%) horse sera were seropositive by ELISA. Among the RT-PCR-positive samples, 12 of the SFTSV S-segment sequences were classified as sub-genotypes B-2 (n = 6) and B-3 (n = 6). ELISA analysis was evaluated by comparison with neutralization test. We investigated SFTSV infection in horses over a 3-year period, but sampling was not performed evenly by season; continuous surveillance of SFTSV in horses is needed. Conclusions: We report the detection of SFTSV RNA and provide serological data on SFTSV prevalence in horses in the ROK. The detection of SFTSV-specific RNA and antibodies in horses, which are in close proximity to humans, suggests that SFTS is an emerging and important health issue, indicating that more attention to its relevance for equestrian workers is needed.


Assuntos
Infecções por Bunyaviridae , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Cavalos , Humanos , Animais , Febre Grave com Síndrome de Trombocitopenia/epidemiologia , Febre Grave com Síndrome de Trombocitopenia/veterinária , Filogenia , Phlebovirus/genética , República da Coreia/epidemiologia , RNA Viral/genética , Infecções por Bunyaviridae/epidemiologia , Infecções por Bunyaviridae/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...